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Abstract

The Monte Carlo (MC) model is one of the most frequently used approaches to simulate grain growth, and retains a

number of features that derive from the closely-related Ising and Potts models. The suitability of these features for

the simulation of grain growth is examined, and several modifications to the Hamiltonian and transition probability

function are proposed. The resulting model is shown to not only reproduce the usual behaviors of grain growth

simulations, but to substantially reduce the effect of the underlying pixel lattice on the microstructure as compared to

contemporary simulations.
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1. Introduction1

The Monte Carlo (MC) method is one of the main computational approaches used in the study of grain growth2

and related phenomena, and has provided useful qualitative insights into these processes for several decades. Deriving3

from the Ising and Potts models of ferromagnetic systems, MC models represent a material as a collection of area or4

volume elements endowed with spins and arranged on a regular lattice. A grain is defined as a contiguous collection5

of material elements with the same spin, and the microstructure is evolved by probabilistic rules to propagate the spin6

of a given element to the neighboring ones.7

Originally formulated in the context of microstructure evolution by Anderson et al. [1], the MC model quickly8

proved useful in the study of the grain growth microstructure [2], of stagnation in the presence of second phase9

particles [3], of the effect of anisotropic boundary energies [4], and of the factors leading to abnormal grain growth10

[5, 6, 7]. Furthermore, the relative simplicity of the formulation allowed various implementations of the model to11

be extended for other purposes as well. For example, three-dimensional versions have been used to investigate the12

variations in grain structure around welds [8] and the effect of texture and texture evolution during grain growth on13

the microstructure [9], to evaluate a mean-field theory for the grain size distribution [10], and to support an analytical14

model for disordered cellular structures inspired by thermodynamic considerations [11].15

Certain modifications of the underlying algorithm have been proposed to improve the computational efficiency16

of the model. The most important of these is the kinetic Monte Carlo method, occasionally known in the materials17

science literature as the n-fold way algorithm. The fundamental observation is that using a variable time step equal18

to the interval required for the system configuration to change is often more efficient than using a constant time step19

and repeatedly proposing changes that may be rejected. While initially developed for the Ising model [12], the same20

approach may be applied to the MC model of grain growth [13]. This has the additional advantage that the kinetic21

Monte Carlo method is readily parallelized [14, 15], allowing the simulation of statistically significant volumes of22

material.23

Unfortunately, the standard formulation of the MC model should not be used if predictive simulations of material24

behavior are required [16]. There are three main reasons for this assertion. First, the probabilistic rules used by the25

Monte Carlo method to update the system configuration do not have any physical basis. When initially formulated by26
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Metropolis et al. [17], the purpose of the Monte Carlo method was to model the distribution of states of a microscopic27

system in thermodynamic equilibrium. The rule for changing the configuration was chosen on the basis of mathe-28

matical simplicity, subject to the condition that the system sample states at frequencies consistent with the canonical29

ensemble. By contrast, a microstructure is a macroscopic system far from thermodynamic equilibrium. A change of30

configuration is interpreted as grain boundary migration and should be subject to the corresponding kinetics, not to31

relations defined only for mathematical convenience.32

Second, the quantities appearing in MC models do not have well-defined units, precluding the direct comparison33

of simulation results with experiments. For example, material elements have arbitrary spatial dimensions, time is34

measured in arbitrary units, and the temperature appearing in the Metropolis dynamics is meaningful only in the35

context of the type of simulations performed by Metropolis et al. [17]. This situation is caused by the absence of36

any suitable kinetic relations in the formulation of the model. While at least one analytic [18] and several numerical37

[19, 20] approaches to assign units to the simulations have been proposed, none appears to have been widely adopted38

by the computational materials science community.39

Third, the use of a lattice of material elements introduces an inherent anisotropy to the simulations. This causes40

various unphysical phenomena including grain boundary faceting, deviations of the dihedral angles along triple lines,41

and grain growth stagnation. The consensus in the literature [21, 22, 23, 24] seems to be that the anisotropy may42

be mitigated by carefully selecting the underlying lattice, by using a fictitious temperature high enough to introduce43

limited grain boundary roughening, or by increasing the interaction cutoff distance between material elements. None44

of these is entirely satisfactory though. The number of available lattices is limited, the temperature must be calibrated45

to balance the effects of unphysical boundary faceting with unphysical boundary roughening, and increasing the46

interaction distance dramatically accelerates the disappearance of small microstructural features.47

The primary purpose of this paper is to reduce the inherent anisotropy of the MC model. Since the absence of48

a physical basis for the standard MC model means that nothing is sacrosanct, we make two modifications to the49

underlying algorithm. First, the strength of the element interactions is allowed to vary as a function of the element50

separation, rather than being a constant for all elements within the cutoff distance. Second, the configuration is updated51

by choosing one of several proposed configurations with a function that depends smoothly on the energy change,52

rather than accepting or rejecting a single proposed configuration with a function constructed only for mathematical53

convenience.54

The performance of the modified MC model is compared to that of a standard MC model by analyzing the mi-55

crostructures resulting from grain growth simulations. Specifically, we consider the distribution of grain boundary56

normal directions and the deviations of the rate of change of grain areas from the von Neumann-Mullins relation57

[25, 26]. Comparing these with corresponding quantities for a truly isotropic material reveals that the modified MC58

model reduces the inherent anisotropy of the lattice significantly more than the standard MC model, and is therefore59

preferable to the standard MC model in practice.60

2. Traditional Monte Carlo61

The history of the MC method is briefly reviewed, with particular emphasis on the source of the algorithm. This62

will help to identify a set of features that may safely be changed without violating any fundamental mathematical or63

thermodynamic constraints, and serves as motivation for the modifications to the algorithm proposed in Section 3.64

2.1. Ising and Potts Models65

The Ising and Potts models are mathematical models most often used to study phase transitions in ferromagnetic66

systems, and have a long history in statistical physics [27]. Assume that a regular lattice of particles endowed with67

magnetic spins inhabits a two-dimensional (2D) region with periodic boundary conditions. The spin of a given particle68

interacts magnetically with the spins of neighboring particles, and possibly with an external magnetic field.69

The study of this system is usually restricted to the expected distribution of states in the canonical ensemble. The70

interaction of neighboring particles effectively precludes an analytical solution though [28], meaning that the expected71

distribution of states is usually evaluated by sampling as a given configuration moves through the state space. A set72

of rules to guide the evolution of the initial configuration is provided by either Glauber dynamics [29] or Metropolis73

dynamics [17].74
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The Ising and Potts models (and MC grain growth models) are customarily described within the framework of the75

Metropolis algorithm. This means that the usual formulations have the following three features:76

1. The Hamiltonian provides the energy of a configuration of the system. It is generally constructed from the sum77

of finite-range pairwise interactions and should be non-negative, bounded, and translation invariant.78

2. The proposal distribution is the conditional probability distribution of the proposed configuration of the sys-79

tem in the following time step, given the current system configuration. It is often assumed to be a uniform80

distribution on the adjacent states in the configuration space.81

3. The acceptance distribution (often known as the transition probability) is the conditional probability to accept82

the proposed configuration of the system in the following time step, given the current system configuration.83

These three features of the Ising and Potts models will be described in further detail below to help clarify the historical84

underpinnings of the MC grain growth model.85

The Hamiltonian used by the Ising and Potts models in the absence of an external magnetic field is most often of86

the form87

H =
1

2

∑

i

J
∑

j

(1 − δsi s j
), (1)

where the outer sum is performed over all spins, J is the energy penalty between spins of different orientations, the88

inner sum is performed over the spins in a standard neighborhood around the ith spin, and δsis j
is the Kroneker delta,89

equal to one whenever the states si and s j of the ith and jth spins are the same and to zero otherwise. Notice that90

the energy of a configuration with all spins aligned is zero, and that the energy penalty for spins of different states is91

halved in Equation 1 because of double-counting.92

The inner summation in Equation 1 will be called the kernel of the Hamiltonian, while the coefficient of the kernel93

will be called the energetic coefficient and the argument of the inner summation will be called the weighting function.94

The kernel is distinguished by being closely related to the change in the energy of the system when the state of a single95

spin is changed. Specifically, changing the state of the ith spin changes the system energy by96
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, (2)

where s0
i

is the initial state and s1
i is the final state. Notice that this is simply the difference in the appropriate kernels97

multiplied by the energetic coefficient.98

The proposal and acceptance distributions are usually formulated to satisfy a technical condition known as de-99

tailed balance. Suppose, as in the Metropolis algorithm [17], that the model is interpreted as sampling the allowed100

microstates of a physical system that obeys the canonical ensemble. Then the probability of observing a particular101

microstate xa is102

pa ∝ exp

(

−
Ha

kBT

)

, (3)

where Ha is the Hamiltonian evaluated for state xa, kB is Boltzmann’s constant, T is the absolute temperature, and the103

constant of proportionality is the partition function. This system satisfies detailed balance provided that the proposal104

distribution and acceptance distribution are such that the probability of being in state xa and transitioning to state xb105

is the same as the probability of being in state xb and transitioning to state xa.106

Within the literature, the proposal distribution is usually a uniform distribution over the adjacent states in the107

configuration space. That is, a spin and a proposed state for that spin are randomly selected, subject to the condition108

that the proposed state be different from the current one, and the resulting energy change is calculated from Equation109

2. Given this proposal distribution, one of two acceptance distributions is often used. The Metropolis function [17]110

w =















exp
(

− ∆H
kBT

)

if ∆H > 0

1 if ∆H ≤ 0
, (4)

is the simpler of the two, and has the advantage of historical precedence. By contrast, the Glauber function [29]111

w =
1

1 + exp
(

∆H
kBT

) (5)
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has more physical motivation, and has the advantage of being a smooth function of the energy difference. Both satisfy112

the conditions of ergodicity and detailed balance, though the Metropolis function appears more frequently in the113

literature.114

2.2. Monte Carlo Grain Growth115

While the Ising and Potts models do not correspond to any physical system, given a suitable initial condition the116

procedure described above does result in the growth of domains containing particles with aligned spins. Visually,117

these domains resemble grains in a 2D material enough to suggest an alternative interpretation of the model.118

Let the lattice of particles correspond to the pixels of a 2D material, and let the state of a spin correspond to the119

crystal orientation of the pixel. With these modifications, the model described above may be used as a simple model120

of grain growth. However, the following points should be emphasized:121

1. The dynamics of this system is strongly dependent on the choice of kernel. Small neighborhoods generally122

result in structures that do not resemble microstructures. While the kernel from Equation 1 is often used, this123

has no particular physical motivation.124

2. The Metropolis transition function is purely a convenient mathematical choice when attempting to measure the125

stationary distribution on a configuration space, and has no particular physical motivation.126

3. Interpreting the model in the context of grain growth requires the configuration space to consist of macrostates127

instead of microstates, calling into question the initial assumption that the system obey the canonical ensemble.128

4. Units of length and time do not appear anywhere in the model, and as a result the temperature in Equation 4 is129

fictitious. Various attempts have been made to relate the simulations to experiments [18, 19, 20], though these130

have not been widely adopted.131

While the first and second points have been noticed and commented upon by other authors, there does not appear to132

be any literature in the context of grain growth that acknowledges the third. This is particularly troublesome for the133

study of grain growth, in which the initial state of the system guarantees evolution in a certain direction (i.e., towards134

larger grain sizes) and is therefore necessarily far from thermodynamic equilibrium. There is little reason to assume135

that a simulation formalism designed to guarantee a correct statistical sampling of near-equilibrium states will also136

produce physically realistic dynamics in states far from equilibrium. The fourth requires a lengthy discussion that will137

be postponed for a future publication.138

Provided that the subject of study is the qualitative behavior of a material, the above concerns should not prevent139

the use of the MC grain growth model. This is particularly the case when simulating the behavior of a simplified140

material, e.g., one with a constant grain boundary energy function, since this means that there is no experimental basis141

for comparison. As soon as the purpose is to simulate realistic material behavior though, the specifics of the energetics142

and kinetics should be carefully considered.143

3. Revised Monte Carlo144

This section suggests several changes to the traditional MC grain growth algorithm. Specifically, we propose145

changes to the kernel and transition function that break the historical connections to the Ising and Potts models, but146

appear to be more physically motivated in the context of grain growth. Our changes should nevertheless be relatively147

simple to incorporate into existing codes.148

3.1. Smooth Kernel149

MC grain growth simulations are generally performed on a lattice of elements. Since the process of grain growth150

in a material with a uniform boundary energy is isotropic and the underlying lattice is inherently anisotropic, various151

techniques have been developed to reduce the magnitude of the anisotropy. Foremost among these is increasing the152

number of pixels included in the kernel of the Hamiltonian, since making the interacting neighborhood more circular153

generally reduces the effect of the lattice on the energy calculation. That is, the motivation for this change is to make154

the kernel as nearly a radial function as possible.155

The fundamental purpose of the kernel is to transform the energetic contribution of surface elements along a grain156

boundary into a volumetric contribution from the pairwise interaction of pixels. This is necessary since a pixel is the157
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elementary unit of the simulation, and a pixel corresponds to a discrete volume of material. Hence, we desire a kernel158

of the same form as in Equation 1, but with the following properties:159

1. The kernel should not identify any particular direction in space, i.e., the weighting function should be as close160

to a radial function as is possible on a lattice.161

2. The weighting function should give more weight to nearby pixels since these are presumably more relevant to162

the local configuration.163

3. The weighting function should smoothly decrease to zero at the edge of the kernel neighborhood to reduce the164

effect of the choice of cutoff distance on the dynamics.165

This suggests that the weighting function be based on the discrete sampling of a continuous radial function, e.g., a166

Gaussian. For convenience of notation, the value of the Gaussian centered on r̄i, the coordinates of the ith pixel, and167

evaluated on r̄ j, the coordinates of the jth pixel, will be written as168

Fi j = exp

(

−
|r̄ j − r̄i|

2

2σ2

)

. (6)

Notice that Fi j depends on the standard deviation σ, and that the standard deviation is expressed in the same units as169

the coordinates of a pixel. Let qi be the unique label for the grain containing the ith pixel. With this, the kernel Ki170

around the ith pixel may be written as171

Ki =

∑

j : Fi j≥c Fi j(1 − δqiq j
)

∑

j : Fi j≥c Fi j

, (7)

where the summations are performed over pixels with weights above the cutoff value c, and δqiq j
is the Kroneker delta.172

The summation is normalized in an effort to make the magnitude of the energetic contribution of a pixel independent173

of σ and c. Based on the same reasoning as in Equation 2, the energy change of the system resulting from changing174

the orientation of the ith pixel is given by the difference of the nuclei. That is,175

∆H = γ(K1
i − K0

i ), (8)

where γ is a constant energetic coefficient, K0
i

is the kernel in the initial state, and K1
i

is the kernel in the final state.176

The performance of the proposed kernel and appropriate values of σ and c will be considered in Section 4.177

3.2. Weighted Transitions178

The traditional formulation of the MC grain growth algorithm stipulates that one pixel be selected uniformly at179

random from the lattice, and that one proposed state be selected uniformly at random from the entire set of permissible180

states. After calculating the energy difference between the current state and the proposed state, the proposed state is181

accepted on the basis of the Metropolis function. This has the advantages of simplicity and of satisfying detailed182

balance.183

Early practitioners observed that the majority of proposed states resulted in substantial energy increases though,184

resulting in relatively few accepted changes. The reason for this phenomenon is that a pixel will more often change185

orientation to that of one of the neighboring grains (resulting in boundary motion) than change to a completely different186

orientation (resulting in grain nucleation). As a result, the simulation may often be accelerated with only minimal187

changes to the final state by selecting the proposed state uniformly at random from the set of neighboring orientations188

and excluding the initial orientation of the pixel. While this violates detailed balance, the relaxed relationship between189

the model and the statistical mechanical underpinnings means that this violation does not necessarily invalidate the190

results.191

The dynamics described above sample all of the orientations adjacent to the pixel at the same frequency, regardless192

of the number of adjacent pixels with that orientation. Consider a pixel adjacent to a triple point for which the energy193

of the system is reduced by either one of the available reorientations, but more so by one than by the other. Using194

a uniform proposal distribution and a Metropolis acceptance distribution, the two available reorientations will be195

sampled with the same probability, and therefore will be accepted at the same probability since they both reduce the196

energy of the system. However, this contradicts a general principle for macroscopic systems that the driving force for197

an event is directly proportional to the accompanying energy reduction.198
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This suggests that the proposal and acceptance distributions be reformulated to apply the MC method to a macro-199

scopic system. Specifically, select a pixel uniformly at random from the lattice, and assign the ith state from the entire200

set of permissible states to this pixel with probability201

Wi =

exp
(

−
∆Hi

kBT

)

∑

j exp
(

−
∆H j

kBT

) . (9)

Notice that this effectively samples all of the permissible states simultaneously, but assigns weights to each according202

to the accompanying energy change. Since the current orientation of the pixel is included in the set, a reorientation203

event may effectively be rejected. Furthermore, the probabilities have the advantage of being smooth functions of204

the energy changes, and may be shown to satisfy detailed balance. This is effectively a hybrid of the sequential205

MC algorithm and the kinetic MC algorithm in that the relative probability of events is appropriately considered, but206

without the need to construct and maintain a table of all possible transition rates.207

This scheme does have the disadvantage that considerable computational time is spent examining relatively im-208

probable grain nucleation events. As with traditional MC, the simulation may be substantially accelerated by consid-209

ering only the full set of neighboring orientations (including the initial orientation of the pixel) instead of the entire210

set of permissible states. Although the resulting dynamics violate detailed balance in precisely the same way as the211

standard MC model, we find that this change minimally affects the final state of the system.212

3.3. Boundary Normal Calculation213

The motivation to reduce the inherent anisotropy of the MC model comes from our desire to simulate grain214

coarsening effects in real materials. This implies the use of a realistic grain boundary energy function [30] that includes215

the dependence of the energy on the boundary plane normal. This dependence is quite sharp for certain boundaries,216

meaning that the normal vector must be computed accurately to avoid unphysical phenomena during microstructure217

evolution. Although calculating a smoothly-varying boundary normal in a system composed of discrete pixels is218

known to be difficult [31, 32], the procedure described below is found to be robust to the lattice anisotropy and may219

be calculated at all points along the grain boundary in any dimension.220

Roughly speaking, the boundary normal is found by constructing a cloud of weighted points along the boundary221

and performing principal component analysis on this point cloud. Concentrating on Ki, the kernel of the ith pixel,222

suppose that the jth pixel satisfies the condition Fi j > c and that grains qi and q j share a boundary. We find all pairs of223

adjacent pixels within the region Ki such that one pixel is in grain qi and the other is in grain q j. A point is constructed224

from every pair of pixels by averaging the pixel coordinates, and is given a weight by averaging the values of the225

weighting function. A schematic of the resulting point cloud is given in Figure 1.226

Explicitly, the set S i j of coordinates and weights for the point cloud on the boundary of grains qi and q j in the227

region of the ith pixel is given by228

S i j =

{

r̄k + r̄l

2
,

Fik + Fil

2

}

, (10)

where k and l range over all values such that Fik ≥ c, Fil ≥ c, qk = qi, ql = q j, and the kth and lth pixels are229

adjacent. The normal direction is defined as the principal axis of the weighted point cloud with the smallest variance,230

and the weights serve to increase the importance of points near the ith pixel and smooth out the variation of the normal231

direction along the boundary.232

4. Results and Discussion233

4.1. Simulation Parameters234

We have implemented the modifications proposed in Section 3, and have performed extensive 2D MC grain growth235

simulations in a material with a uniform grain boundary energy to evaluate the performance of the modified MC model.236

This involved an exhaustive sweep through a parameter space that includes the temperature T , the standard deviation237

of the smooth kernel σ, and the interaction distance cutoff c. All simulations begin from the same initial condition,238

namely, a microstructure composed of 9725 equiaxed grains on a hexagonal lattice containing 9, 000, 000 pixels. To239
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Figure 1: A schematic representation of the point cloud on which principal component analysis is performed to calculate the grain boundary normal.

Pixels within the interaction cutoff distance of the central pixel appear at the bottom of the figure, with the grain of the central pixel colored blue and

the neighboring grain colored red. The grey surface is the weighting function of the smooth kernel. The blue points used in the principal component

analysis are at the midpoints of the boundary segments between red and blue pixels, with weights interpolated from the weighting function.

enable a comparison with the standard MC model, we perform a second set of simulations with a uniformly weighted240

kernel defined by241

K′i =

∑

j : |r̄ j−r̄i|≤c(1 − δqiq j
)

∑

j : |r̄ j−r̄i|≤c 1
, (11)

where the strength of the interactions is constant for all pixels within the interaction cutoff distance c. Simulations242

with this kernel were performed for the same intervals of temperature T and for comparable kernel areas as for the243

modified MC model. Table 1 represents the scope of kernel type, sizes, and temperatures investigated in this study.244

Since the MC model does not contain quantities with well-defined units, we simply set kB and γ to 1.245

Kernel type Kernel size Temperature

Uniform c = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2

Smooth σ = 1, 1 2
3
, 2 1

3
, 3, 3 2

3
, 4 1

3
, 5 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2

c = 10−5, 10−4, 10−3, 10−2

Table 1: Range of parameters studied in a series of Monte Carlo grain growth simulations.

Figure 3 shows the evolution of the initial microstructure using the smooth kernel with σ = 2 1
3
, c = 10−5, and246

T = 10−8, resulting in around 100 final grains. That the average grain size increased linearly with Monte Carlo step247

number will be shown in Section 4.3, and all suitably-scaled distributions converged to the invariant distributions for248

statistically self-similar growth; the distribution of grain radii divided by the average grain radius is roughly log-normal249

as in Figure 2(a), while the distributions of topological quantities (e.g., the number of grains bounded by n triple points250

as in Figure 2(b)) approach those observed elsewhere in the literature [33, 34]. Deviations from the expected grain251

growth behaviors were observed in simulations for certain combinations of kernel sizes and temperatures, though.252

One example is given in Figure 4, where we consider the case of low temperature and small kernel size for both253

the smooth and uniform kernel. Whereas abnormal grain growth is observed for the smooth kernel in Figure 4(a),254

the uniform kernel in Figure 4(b) only resulted in slower grain growth while maintaining the grain size distribution.255

Generally normal grain growth, in a statistical sense, is observed in all but a few cases. For simulations performed with256

a small smooth kernel (σ = 1), this kind of abnormal growth was only observed for lower temperatures (T < 10−2).257

Increasing the temperature alleviated these effects as has been prescribed previously in the literature [21, 22, 24].258

4.2. Boundary normal distribution259

In physical systems where the interface energy is uniform, e.g. in a soap foam or materials with an isotropic260

grain boundary energy, the distribution of boundary normals is not expected to contain preferred direction. However,261
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Figure 2: Grain neighbor and size distribution for an example set of simulation parameters, σ = 1 2
3

, c = 10−5 , and T = 10−4, where the number of

grains in the system is reduced by a factor of 20. The coloring represents the distributions from early simulation time (blue) to later times (red).

the implementation of the MC method requires an underlying discretized lattice, which induces preferred directions262

irrespective of the physical model. This was observed in a dramatic fashion by Anderson et al. [1]; in this case, the263

boundaries of grains conformed almost exactly to the simulated square grid. In general, the efficacy of a MC grain264

growth simulation depends heavily on the ability to quantify and minimize the effects of lattice anisotropy on the265

simulated microstructure.266

Isotropic grain growth implies that a uniform boundary normal distribution (BND) should develop for a statis-267

tically representative sample, i.e., one where the number of grains is sufficiently large to make the counting error268

negligible. Hence, variations in the BND nmc(θ), where θ is the angle of the normal with respect to the x-axis mod-269

ulo 60◦, allow the anisotropy of identical grain growth simulations with differing parameters to be quantified. More270

specifically, a single initial microstructure with 9725 grains was evolved using different sets of simulation parameters,271

and BNDs were all measured at the point where each of the simulations contained 3000 grains and had similar grain272

size distributions. The reduction in the number of grains by a factor of three ensures that the effects of the anisotropy273

are sufficiently reflected by the system configuration.274

Unfortunately, the BND is also subject to the complicating effects of the measurement procedure itself. For275

example, the boundary normal at every point along a straight-line boundary in 2D is by definition a constant. On the276

other hand, the boundary normal distribution for the same boundary in a discretized lattice has a non-negligible width,277

indicating deviations from the expected boundary normal distribution. That is, both the anisotropy introducted by the278

underlying lattice and the anisotropy introduced by normal estimation algorithm must be quantified.279

The cumulative boundary normal distributions Nmc(θ) for selected simulations are shown in Figure 5. Figure 5(a)280

shows the case of a uniform kernel with R = 1, Figure 5(b) shows the case of a uniform kernel with R = 3, and281

Figure 5(c) shows the case of a smooth kernel with σ = 1 2
3

and c = 10−5. The temperature was 10−8 for all of282

these simulations. The different lines correspond to different σ of the smooth kernel used to estimate the boundary283

normals, as described in Section 3.3. Notice that a severe kink developed at 30◦ in all three cases, indicating an284

elevated probability of boundaries aligned with the hexagonal MC lattice. Increasing the size of the smooth kernel285

used in the boundary normal estimation procedure consistently reduces the strength of this discontinuity. Using the286

smooth kernel for the MC evolution, as in Figure 5(c), results in a marked improvement as well, producing a generally287

more uniform distribution of boundary normals. By comparison, the uniform kernel produces secondary kinks at 11◦288

and 49◦ as the size of the kernel is increased from Figure 5(a) to Figure 5(b). This implies that the uniform kernel289

does not monotonically converge to the ideally isotropic case with increasing kernel size, despite this being the usual290

procedure to reduce lattice anisotropy.291

Figure 5(d) shows the same boundary normal distribution for an ideally isotropic structure superimposed on a292

hexagonal lattice, and therefore indicates the systematic error introduced by the boundary normal estimation method.293
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(a) (b)

(c) (d)

Figure 3: Snap shots of a single grain growth simulation at (a) 0 MCS, (b) 600 MCS, (c) 1300 MCS, and (d) 2000 MCS. A smooth kernel was used

with parameters, σ = 2 1
3

, c = 10−5, and T = 10−8.

This is accomplished by first constructing a uniform sampling of boundaries with tilts ranging from 0◦ to 360◦ in294

steps of 0.1◦. The boundaries are discretized on a hexagonal 2D lattice that is large enough (200 × 200) to contain295

an appreciable number of facets. Figure 6 shows an example of this process. Normal estimates are produced using296

the prescribed algorithm with smooth kernels of various sizes. As the size of the smooth kernel used to compute297

the normals is increased, the normal directions along the straight boundary converge to nearly a constant; that is, the298

distribution of these normals becomes uni-modal, continuous, and minimally spread. Without analyzing the resulting299

distributions in detail, Figure 5(d) shows a trend of the discretization effects being smoothed out as the size of the300

smooth kernel used for the normal estimation is increased. Given that the boundary tilts are uniformly sampled,301

the cumulative distribution for the boundary normal distribution would ideally be the straight line shown in black in302

Figure 5(d). A simple comparison with the cumulative computed reference distributions suggests that the contribution303

of the boundary normal estimation to the apparent anisotropy is nontrivial. Overall though, the method of normal304

calculation proposed in Section 3.3 appears to perform accurately and precisely when supplied with around 20 points305

along the boundary. This is in agreement to other methods used to estimate boundary inclination [32].306

To separate this from the anisotropy due to the kernel used in the MC simulation, we calculate, the sum-of-square307

9



(a) (b)

Figure 4: Snap shots of two grain growth simulations started from the microstructure in Figure 3(a) after 2000 MCS. (a) uses a smooth kernel with

σ = 1, c = 10−5, and T = 10−8. (b) uses a uniform kernel with a cutoff of R = 1 lattice unit and T = 10−8.

difference between the reference cumulative distribution in Figure 5(d) and the other cumulative distributions in Figure308

5. Explicitly, this sum of square difference is given by309

S S D =
∑

θi

[Nrc(θi) − Nmc(θi)]
2, (12)

where θi is in the set of angles used in the binning procedure, and the results are presented in Table 2. For both the310

uniform kernel and the smooth kernel, the discrepancy reaches a comparatively small value in the range of 0.1 to 0.2311

for the largest evolution kernels and normal estimation kernels, though for much larger values of R for the uniform312

kernel than of σ for the smooth kernel. Note that the S S D quantities in Table 2 are consistent with a qualitative313

comparison of the curves in Figure 5. From this, we may conclude that both the underlying lattice type and the314

interaction kernel must be chosen carefully if the intention is to produce physically meaningful microstructures.315

4.3. von Neumann-Mullins Scaling316

The von Neumann-Mullins relation (vNMR) relates the rate of area change of a grain to the number of triple317

points on the grain perimeter. The relation is exact in two dimensions for purely curvature-driven grain growth with318

an isotropic grain boundary energy function (i.e. all boundaries have the same energy per unit length). Specifically,319

the rate of area change for a grain with N triple points is320

dAN

dt
= K(N − N0), (13)

where K is the reduced mobility and N0 is equal to 6, the number of triple points required for a grain’s area to be321

constant. Combined with the assumption of self-similar growth, this implies that the area of an average grain should322

increase linearly in time (<A> ∝ t), leading to a corresponding decay in the number of grains (Ng ∝ t−1). Although a323

sufficiently accurate simulation will satisfy the vNMR exactly for every grain on every time step, the usual practice for324

Monte Carlo simulations is only to verify that it is satisfied on average for all grains with a given number of bounding325

triple points.326

The dependences of the growth rates on kernel size and on temperature are explored in more detail in Figure 8,327

where the average grain size <A> is shown as a function of MCS. Notice that in all cases the average grain size328

increases linearly in time after an initial transient, and is thus consistent with curvature-driven grain growth. To329

evaluate the performance of our MC simulations, we track the number of triple points on the boundary, the area330
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Figure 5: Cumulative plots of the boundary normal distribution in a MC evolved microstructure when only 3000 grains remain using (a) a uniform

kernel with R = 1 lattice unit and T = 10−8 , (b) a uniform kernel with R = 3 lattice units and T = 10−8 , and (c) a smooth kenel with σ = 1 2
3

,

c = 10−5 and T = 10−8. (d) is the cumulative distribution of an ideally isotropic structure. The black dashed line corresponds to the uniform

distribution. The legend indicates the size of the smooth kernel used to evaluate the boundary normals.

change, and the total area of every grain on every MCS. The average reduced mobility K and the intercept N0 are331

determined by a linear least-square fit to Equation 13 using all grains with N bounding triple points where 4≤N≤12.332

Examples of this calculation for two sizes of the uniform kernel and three sizes of the smooth kernel appear in Figure333

7. The intercept N0 is consistently in the expected range about 6, though the average reduced mobility K appears334

to increase with the kernel size. Two more points should be made about Figures 8(a) and 8(b), where the average335

area of a grain is plotted as a function of MCS for uniform kernels with R = 1 and R = 5, respectively. First, the336

rate of change of the average area increases strongly with increasing kernel size. This makes intuitive sense, since337

small grains tend to collapse when their radius is comparable to that of the kernel. Second, the average grain area338

in MC simulations using the uniform kernel shows almost no sensitivity to the temperature within the investigated339

interval. This is believed to be the result of the fictitious thermal energy being smaller than the pixel interaction340

strength, meaning that thermally-activated boundary roughening is not extensive enough to affect the grain growth341

kinetics [24]. At a reasonably higher temperature, the trends for Figures 8(a) and 8(b) are expected to show similar342

temperature dependence to that of Figures 8(d) and 8(e).343

The behavior of the smooth kernel in Figures 8(c), 8(d) and 8(e) is quite different. For σ = 1 and c = 10−5 in344

Figure 8(c), the behavior changes drastically for temperatures between 10−4 and 10−3, going from the abnormal grain345
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Figure 6: A simulated boundary inclined 10◦ from the horizontal. The green line represents the continuous boundary. Note the stair-step behavior

of the line mapped onto the discrete lattice by the black line which represents the interface between the blue and red regions.

Simulation type Kernel size PCA, σ = 1 σ = 1 2
3
σ = 2 1

3
σ = 3 σ = 3 2

3
σ = 4 1

3
σ = 5

Uniform R = 1 4.755 3.671 2.778 2.372 2.146 2.030 1.963

Uniform R = 2 1.541 1.342 0.908 0.611 0.451 0.345 0.279

Uniform R = 3 0.513 0.485 0.547 0.495 0.456 0.420 0.399

Uniform R = 4 0.245 0.232 0.397 0.458 0.484 0.494 0.501

Uniform R = 5 0.164 0.167 0.240 0.332 0.388 0.419 0.441

Uniform R = 6 0.113 0.182 0.287 0.396 0.484 0.542 0.586

Uniform R = 7 0.173 0.095 0.090 0.092 0.106 0.121 0.132

Uniform R = 8 0.160 0.121 0.118 0.126 0.141 0.154 0.170

Uniform R = 9 0.122 0.103 0.095 0.109 0.127 0.142 0.161

Uniform R = 10 0.091 0.096 0.101 0.127 0.149 0.172 0.195

Smooth σ = 1 2
3

0.800 0.610 0.585 0.521 0.479 0.445 0.421

Smooth σ = 2 1
3

0.290 0.169 0.175 0.180 0.190 0.193 0.200

Smooth σ = 3 0.210 0.135 0.136 0.152 0.173 0.182 0.193

Smooth σ = 3 2
3

0.118 0.077 0.088 0.112 0.136 0.154 0.172

Smooth σ = 4 1
3

0.116 0.085 0.090 0.110 0.133 0.152 0.171

Smooth σ = 5 0.125 0.122 0.117 0.137 0.160 0.180 0.202

Table 2: Sum-of-squares difference (S S D) values between the measured cumulative boundary normal distributions, Nmc(θ), and the reference

cumulative distributions, Ncr(θ), for various kernel types and sizes. Each row represents a specific kernel type used for the evolution of the Monte

Carlo grain growth, and each column represent the size of the smooth kernel used for the estimation of normals.

growth visible in Figure 4(a) to normal grain growth where K is nonzero, N0 is around the ideal value of 6, and the346

average grain area increases linearly in time. For the smooth kernel with σ = 1 2
3

and c = 10−5 in Figure 8(d), the347

average grain area increases linearly for a wide range of temperatures, and there is a noticeable trend of decreasing K348

with increasing T from 10−8 to 10−2. This trend becomes even more evident as the smooth kernel is increased in size349

to σ = 3 with c = 10−5 in Figure 8(e). This may be explained by the dependence of the average growth rate on the350

effective kernel size; as the temperature is lowered, the distance at which the pixel interaction strength is comparable351

to the fictitious thermal energy is shifted further out, increasing the effective radius of the kernel and the growth rate352

of the average grain.353

Returning to Figure 7, the scatter in the growth rates of individual grains also appears to depend strongly on the354
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Figure 7: Area changes of grains that do not experience a topological change between MCS = 99 and MCS = 100 at T = 10−8 for (a) a uniform

kernel with R = 1 lattice unit, (b) a uniform kernel with R = 5 lattice units, (c) a small smooth kernel with σ = 1 and c = 10−5, (d) a smooth kernel

with σ = 1 2
3

and c = 10−5, and (e) a smooth kernel σ = 3 and c = 10−5. Plots are shown on axes with consistent scale for comparison purposes.

The red line represents the best fit to Equation 13.

kernel size. Generally, given a collection of grains with N bounding triple points, the spread in rate of area change355

decreases with increasing kernel size. This implies that the simulation becomes more accurate as more information356

is used to determine boundary movement. Figure 9 specifically shows that the standard deviation in the rate of area357

change for grains with a particular number of bounding triple points decreases with kernel size. The values of the358

rate of area change are scaled at each timestep by the average area to allow the values to be compared more directly.359
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Figure 8: Average grain size, <A>, for the entire simulated temperature range across 2000 MCS for (a) a uniform kernel with R = 1 lattice unit,

(b) a uniform kernel with R = 5 lattice units, (c) a small smooth kernel with σ = 1 and c = 10−5, (d) a smooth kernel with σ = 1 2
3

and c = 10−5,

and (e) a smooth kernel σ = 3 and c = 10−5. Plots are shown on axes with consistent scale for comparison purposes. The legend indicates the

simulation temperature.

The plot shows the standard deviation over the entire simulation. Notice that the dependence of the deviation on the360

temperature, indicated by the color of the marker, is much smaller than the dependence on the size of the kernel.361
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Figure 9: Standard deviation in the rate of area change for grains with a given number of bounding triple points. (a) shows the results for a smooth

kernel for σ = 1 2
3

, 2 1
3

, 3, 3 2
3

, 4 1
3

, and 5. (b) shows the results for a uniform kernel with R = 1 lattice unit to R = 10 lattice units. Between values

of N, a marker indicates the standard deviation in
dAN

dt
normalized by the average grain size <A>, with increasing σ or R from left to right. The

legend indicates the simulation temperature.

5. Conclusion362

The Monte Carlo approach to grain growth simulations has already been in use for several decades, and has363

several notable advantages including a relative simplicity of implementation. However, caution must be exercised364

when attempting to extract physically-relevant results from this type of simulation. The clearest reasons for this are365

the absence of dimensional quantities in the simulations and the inherent anisotropy of the underlying lattice, though366

there are some theoretical concerns as well. Our main concern here is to evaluate the magnitude of the inherent367

anisotropy, and to propose an alternate smooth kernel that helps to more rapidly reduce the anisotropy with increasing368

kernel size. Specifically, we find that369

• The traditional uniform kernel with nearest neighbor interactions produces boundary inclination populations370

that are strongly influenced by the underlying simulation lattice. This effect is noticeably mitigated only when371

using uniform kernels of sizes much larger than those appearing in the literature.372

• As indicated by Table 2, the proposed smooth kernel produces boundary normal populations comparable to373

those of the uniform one when the standard deviation σ of the smooth kernel is about half the value of the374

radius R of the uniform one.375

• Both the uniform and the smooth kernels reproduce the expected linear dependence of the average grain area376

on time for suitable parameter values.377

• As indicated by Figure 9, the standard deviation of the growth rates of individual grains from the vNMR when378

using the proposed smooth kernel is comparable to that for the uniform one when the standard deviation σ of379

the smooth kernel is about half the value of the radius R of the uniform one.380

If the purpose of a Monte Carlo grain growth simulation is to explore the qualitative effect of some microstructural381

mechanism, then the effect of the inherent lattice anisotropy may well be small enough to be neglected. On the other382

hand, if the intention is to predict material behavior or to compare simulation directly with experiment, the lattice383

anisotropy must be carefully characterized and controlled. Our results indicate that, while the effect of the underlying384

lattice is considerable for a uniform kernel that includes only the neighboring pixels, the effect is gradually reduced385

as the size of the kernel is increased. Furthermore, the proposed smooth kernel with a given value of σ performs386

roughly as well as the uniform kernel with a radius of R = 2σ, indicating that the proposed smooth kernel offers a387

more favorable combination of isotropy and locality. Practically speaking, we would recommend values of σ = 3 and388
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c = 0.01 since these are already in the region of diminishing returns. Finally, the modular nature of the MC algorithm389

means that it should be possible to incorporate the proposed kernel into existing codes with minimal effort.390
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